mirror of
https://codeberg.org/anoncontributorxmr/monero.git
synced 2024-11-23 10:37:37 -07:00
a85b5759f3
These files were pulled from the 1.6.3 release tarball. This new version builds against OpenSSL version 1.1 which will be the default in the new Debian Stable which is due to be released RealSoonNow (tm).
625 lines
19 KiB
C
625 lines
19 KiB
C
/*
|
|
* validator/val_nsec.c - validator NSEC denial of existence functions.
|
|
*
|
|
* Copyright (c) 2007, NLnet Labs. All rights reserved.
|
|
*
|
|
* This software is open source.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
*
|
|
* Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* Neither the name of the NLNET LABS nor the names of its contributors may
|
|
* be used to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
|
|
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/**
|
|
* \file
|
|
*
|
|
* This file contains helper functions for the validator module.
|
|
* The functions help with NSEC checking, the different NSEC proofs
|
|
* for denial of existence, and proofs for presence of types.
|
|
*/
|
|
#include "config.h"
|
|
#include "validator/val_nsec.h"
|
|
#include "validator/val_utils.h"
|
|
#include "util/data/msgreply.h"
|
|
#include "util/data/dname.h"
|
|
#include "util/net_help.h"
|
|
#include "util/module.h"
|
|
#include "services/cache/rrset.h"
|
|
|
|
/** get ttl of rrset */
|
|
static uint32_t
|
|
rrset_get_ttl(struct ub_packed_rrset_key* k)
|
|
{
|
|
struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
|
|
return d->ttl;
|
|
}
|
|
|
|
int
|
|
nsecbitmap_has_type_rdata(uint8_t* bitmap, size_t len, uint16_t type)
|
|
{
|
|
/* Check type present in NSEC typemap with bitmap arg */
|
|
/* bitmasks for determining type-lowerbits presence */
|
|
uint8_t masks[8] = {0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};
|
|
uint8_t type_window = type>>8;
|
|
uint8_t type_low = type&0xff;
|
|
uint8_t win, winlen;
|
|
/* read each of the type bitmap windows and see if the searched
|
|
* type is amongst it */
|
|
while(len > 0) {
|
|
if(len < 3) /* bad window, at least window# winlen bitmap */
|
|
return 0;
|
|
win = *bitmap++;
|
|
winlen = *bitmap++;
|
|
len -= 2;
|
|
if(len < winlen || winlen < 1 || winlen > 32)
|
|
return 0; /* bad window length */
|
|
if(win == type_window) {
|
|
/* search window bitmap for the correct byte */
|
|
/* mybyte is 0 if we need the first byte */
|
|
size_t mybyte = type_low>>3;
|
|
if(winlen <= mybyte)
|
|
return 0; /* window too short */
|
|
return (int)(bitmap[mybyte] & masks[type_low&0x7]);
|
|
} else {
|
|
/* not the window we are looking for */
|
|
bitmap += winlen;
|
|
len -= winlen;
|
|
}
|
|
}
|
|
/* end of bitmap reached, no type found */
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
nsec_has_type(struct ub_packed_rrset_key* nsec, uint16_t type)
|
|
{
|
|
struct packed_rrset_data* d = (struct packed_rrset_data*)nsec->
|
|
entry.data;
|
|
size_t len;
|
|
if(!d || d->count == 0 || d->rr_len[0] < 2+1)
|
|
return 0;
|
|
len = dname_valid(d->rr_data[0]+2, d->rr_len[0]-2);
|
|
if(!len)
|
|
return 0;
|
|
return nsecbitmap_has_type_rdata(d->rr_data[0]+2+len,
|
|
d->rr_len[0]-2-len, type);
|
|
}
|
|
|
|
/**
|
|
* Get next owner name from nsec record
|
|
* @param nsec: the nsec RRset.
|
|
* If there are multiple RRs, then this will only return one of them.
|
|
* @param nm: the next name is returned.
|
|
* @param ln: length of nm is returned.
|
|
* @return false on a bad NSEC RR (too short, malformed dname).
|
|
*/
|
|
static int
|
|
nsec_get_next(struct ub_packed_rrset_key* nsec, uint8_t** nm, size_t* ln)
|
|
{
|
|
struct packed_rrset_data* d = (struct packed_rrset_data*)nsec->
|
|
entry.data;
|
|
if(!d || d->count == 0 || d->rr_len[0] < 2+1) {
|
|
*nm = 0;
|
|
*ln = 0;
|
|
return 0;
|
|
}
|
|
*nm = d->rr_data[0]+2;
|
|
*ln = dname_valid(*nm, d->rr_len[0]-2);
|
|
if(!*ln) {
|
|
*nm = 0;
|
|
*ln = 0;
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* For an NSEC that matches the DS queried for, check absence of DS type.
|
|
*
|
|
* @param nsec: NSEC for proof, must be trusted.
|
|
* @param qinfo: what is queried for.
|
|
* @return if secure the nsec proves that no DS is present, or
|
|
* insecure if it proves it is not a delegation point.
|
|
* or bogus if something was wrong.
|
|
*/
|
|
static enum sec_status
|
|
val_nsec_proves_no_ds(struct ub_packed_rrset_key* nsec,
|
|
struct query_info* qinfo)
|
|
{
|
|
log_assert(qinfo->qtype == LDNS_RR_TYPE_DS);
|
|
log_assert(ntohs(nsec->rk.type) == LDNS_RR_TYPE_NSEC);
|
|
|
|
if(nsec_has_type(nsec, LDNS_RR_TYPE_SOA) && qinfo->qname_len != 1) {
|
|
/* SOA present means that this is the NSEC from the child,
|
|
* not the parent (so it is the wrong one). */
|
|
return sec_status_bogus;
|
|
}
|
|
if(nsec_has_type(nsec, LDNS_RR_TYPE_DS)) {
|
|
/* DS present means that there should have been a positive
|
|
* response to the DS query, so there is something wrong. */
|
|
return sec_status_bogus;
|
|
}
|
|
|
|
if(!nsec_has_type(nsec, LDNS_RR_TYPE_NS)) {
|
|
/* If there is no NS at this point at all, then this
|
|
* doesn't prove anything one way or the other. */
|
|
return sec_status_insecure;
|
|
}
|
|
/* Otherwise, this proves no DS. */
|
|
return sec_status_secure;
|
|
}
|
|
|
|
/** check security status from cache or verify rrset, returns true if secure */
|
|
static int
|
|
nsec_verify_rrset(struct module_env* env, struct val_env* ve,
|
|
struct ub_packed_rrset_key* nsec, struct key_entry_key* kkey,
|
|
char** reason)
|
|
{
|
|
struct packed_rrset_data* d = (struct packed_rrset_data*)
|
|
nsec->entry.data;
|
|
if(d->security == sec_status_secure)
|
|
return 1;
|
|
rrset_check_sec_status(env->rrset_cache, nsec, *env->now);
|
|
if(d->security == sec_status_secure)
|
|
return 1;
|
|
d->security = val_verify_rrset_entry(env, ve, nsec, kkey, reason);
|
|
if(d->security == sec_status_secure) {
|
|
rrset_update_sec_status(env->rrset_cache, nsec, *env->now);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
enum sec_status
|
|
val_nsec_prove_nodata_dsreply(struct module_env* env, struct val_env* ve,
|
|
struct query_info* qinfo, struct reply_info* rep,
|
|
struct key_entry_key* kkey, time_t* proof_ttl, char** reason)
|
|
{
|
|
struct ub_packed_rrset_key* nsec = reply_find_rrset_section_ns(
|
|
rep, qinfo->qname, qinfo->qname_len, LDNS_RR_TYPE_NSEC,
|
|
qinfo->qclass);
|
|
enum sec_status sec;
|
|
size_t i;
|
|
uint8_t* wc = NULL, *ce = NULL;
|
|
int valid_nsec = 0;
|
|
struct ub_packed_rrset_key* wc_nsec = NULL;
|
|
|
|
/* If we have a NSEC at the same name, it must prove one
|
|
* of two things
|
|
* --
|
|
* 1) this is a delegation point and there is no DS
|
|
* 2) this is not a delegation point */
|
|
if(nsec) {
|
|
if(!nsec_verify_rrset(env, ve, nsec, kkey, reason)) {
|
|
verbose(VERB_ALGO, "NSEC RRset for the "
|
|
"referral did not verify.");
|
|
return sec_status_bogus;
|
|
}
|
|
sec = val_nsec_proves_no_ds(nsec, qinfo);
|
|
if(sec == sec_status_bogus) {
|
|
/* something was wrong. */
|
|
*reason = "NSEC does not prove absence of DS";
|
|
return sec;
|
|
} else if(sec == sec_status_insecure) {
|
|
/* this wasn't a delegation point. */
|
|
return sec;
|
|
} else if(sec == sec_status_secure) {
|
|
/* this proved no DS. */
|
|
*proof_ttl = ub_packed_rrset_ttl(nsec);
|
|
return sec;
|
|
}
|
|
/* if unchecked, fall through to next proof */
|
|
}
|
|
|
|
/* Otherwise, there is no NSEC at qname. This could be an ENT.
|
|
* (ENT=empty non terminal). If not, this is broken. */
|
|
|
|
/* verify NSEC rrsets in auth section */
|
|
for(i=rep->an_numrrsets; i < rep->an_numrrsets+rep->ns_numrrsets;
|
|
i++) {
|
|
if(rep->rrsets[i]->rk.type != htons(LDNS_RR_TYPE_NSEC))
|
|
continue;
|
|
if(!nsec_verify_rrset(env, ve, rep->rrsets[i], kkey, reason)) {
|
|
verbose(VERB_ALGO, "NSEC for empty non-terminal "
|
|
"did not verify.");
|
|
return sec_status_bogus;
|
|
}
|
|
if(nsec_proves_nodata(rep->rrsets[i], qinfo, &wc)) {
|
|
verbose(VERB_ALGO, "NSEC for empty non-terminal "
|
|
"proved no DS.");
|
|
*proof_ttl = rrset_get_ttl(rep->rrsets[i]);
|
|
if(wc && dname_is_wild(rep->rrsets[i]->rk.dname))
|
|
wc_nsec = rep->rrsets[i];
|
|
valid_nsec = 1;
|
|
}
|
|
if(val_nsec_proves_name_error(rep->rrsets[i], qinfo->qname)) {
|
|
ce = nsec_closest_encloser(qinfo->qname,
|
|
rep->rrsets[i]);
|
|
}
|
|
}
|
|
if(wc && !ce)
|
|
valid_nsec = 0;
|
|
else if(wc && ce) {
|
|
/* ce and wc must match */
|
|
if(query_dname_compare(wc, ce) != 0)
|
|
valid_nsec = 0;
|
|
else if(!wc_nsec)
|
|
valid_nsec = 0;
|
|
}
|
|
if(valid_nsec) {
|
|
if(wc) {
|
|
/* check if this is a delegation */
|
|
*reason = "NSEC for wildcard does not prove absence of DS";
|
|
return val_nsec_proves_no_ds(wc_nsec, qinfo);
|
|
}
|
|
/* valid nsec proves empty nonterminal */
|
|
return sec_status_insecure;
|
|
}
|
|
|
|
/* NSEC proof did not conclusively point to DS or no DS */
|
|
return sec_status_unchecked;
|
|
}
|
|
|
|
int nsec_proves_nodata(struct ub_packed_rrset_key* nsec,
|
|
struct query_info* qinfo, uint8_t** wc)
|
|
{
|
|
log_assert(wc);
|
|
if(query_dname_compare(nsec->rk.dname, qinfo->qname) != 0) {
|
|
uint8_t* nm;
|
|
size_t ln;
|
|
|
|
/* empty-non-terminal checking.
|
|
* Done before wildcard, because this is an exact match,
|
|
* and would prevent a wildcard from matching. */
|
|
|
|
/* If the nsec is proving that qname is an ENT, the nsec owner
|
|
* will be less than qname, and the next name will be a child
|
|
* domain of the qname. */
|
|
if(!nsec_get_next(nsec, &nm, &ln))
|
|
return 0; /* bad nsec */
|
|
if(dname_strict_subdomain_c(nm, qinfo->qname) &&
|
|
dname_canonical_compare(nsec->rk.dname,
|
|
qinfo->qname) < 0) {
|
|
return 1; /* proves ENT */
|
|
}
|
|
|
|
/* wildcard checking. */
|
|
|
|
/* If this is a wildcard NSEC, make sure that a) it was
|
|
* possible to have generated qname from the wildcard and
|
|
* b) the type map does not contain qtype. Note that this
|
|
* does NOT prove that this wildcard was the applicable
|
|
* wildcard. */
|
|
if(dname_is_wild(nsec->rk.dname)) {
|
|
/* the purported closest encloser. */
|
|
uint8_t* ce = nsec->rk.dname;
|
|
size_t ce_len = nsec->rk.dname_len;
|
|
dname_remove_label(&ce, &ce_len);
|
|
|
|
/* The qname must be a strict subdomain of the
|
|
* closest encloser, for the wildcard to apply
|
|
*/
|
|
if(dname_strict_subdomain_c(qinfo->qname, ce)) {
|
|
/* here we have a matching NSEC for the qname,
|
|
* perform matching NSEC checks */
|
|
if(nsec_has_type(nsec, LDNS_RR_TYPE_CNAME)) {
|
|
/* should have gotten the wildcard CNAME */
|
|
return 0;
|
|
}
|
|
if(nsec_has_type(nsec, LDNS_RR_TYPE_NS) &&
|
|
!nsec_has_type(nsec, LDNS_RR_TYPE_SOA)) {
|
|
/* wrong parentside (wildcard) NSEC used */
|
|
return 0;
|
|
}
|
|
if(nsec_has_type(nsec, qinfo->qtype)) {
|
|
return 0;
|
|
}
|
|
*wc = ce;
|
|
return 1;
|
|
}
|
|
} else {
|
|
/* See if the next owner name covers a wildcard
|
|
* empty non-terminal. */
|
|
while (dname_canonical_compare(nsec->rk.dname, nm) < 0) {
|
|
/* wildcard does not apply if qname below
|
|
* the name that exists under the '*' */
|
|
if (dname_subdomain_c(qinfo->qname, nm))
|
|
break;
|
|
/* but if it is a wildcard and qname is below
|
|
* it, then the wildcard applies. The wildcard
|
|
* is an empty nonterminal. nodata proven. */
|
|
if (dname_is_wild(nm)) {
|
|
size_t ce_len = ln;
|
|
uint8_t* ce = nm;
|
|
dname_remove_label(&ce, &ce_len);
|
|
if(dname_strict_subdomain_c(qinfo->qname, ce)) {
|
|
*wc = ce;
|
|
return 1;
|
|
}
|
|
}
|
|
dname_remove_label(&nm, &ln);
|
|
}
|
|
}
|
|
|
|
/* Otherwise, this NSEC does not prove ENT and is not a
|
|
* wildcard, so it does not prove NODATA. */
|
|
return 0;
|
|
}
|
|
|
|
/* If the qtype exists, then we should have gotten it. */
|
|
if(nsec_has_type(nsec, qinfo->qtype)) {
|
|
return 0;
|
|
}
|
|
|
|
/* if the name is a CNAME node, then we should have gotten the CNAME*/
|
|
if(nsec_has_type(nsec, LDNS_RR_TYPE_CNAME)) {
|
|
return 0;
|
|
}
|
|
|
|
/* If an NS set exists at this name, and NOT a SOA (so this is a
|
|
* zone cut, not a zone apex), then we should have gotten a
|
|
* referral (or we just got the wrong NSEC).
|
|
* The reverse of this check is used when qtype is DS, since that
|
|
* must use the NSEC from above the zone cut. */
|
|
if(qinfo->qtype != LDNS_RR_TYPE_DS &&
|
|
nsec_has_type(nsec, LDNS_RR_TYPE_NS) &&
|
|
!nsec_has_type(nsec, LDNS_RR_TYPE_SOA)) {
|
|
return 0;
|
|
} else if(qinfo->qtype == LDNS_RR_TYPE_DS &&
|
|
nsec_has_type(nsec, LDNS_RR_TYPE_SOA) &&
|
|
!dname_is_root(qinfo->qname)) {
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
val_nsec_proves_name_error(struct ub_packed_rrset_key* nsec, uint8_t* qname)
|
|
{
|
|
uint8_t* owner = nsec->rk.dname;
|
|
uint8_t* next;
|
|
size_t nlen;
|
|
if(!nsec_get_next(nsec, &next, &nlen))
|
|
return 0;
|
|
|
|
/* If NSEC owner == qname, then this NSEC proves that qname exists. */
|
|
if(query_dname_compare(qname, owner) == 0) {
|
|
return 0;
|
|
}
|
|
|
|
/* If NSEC is a parent of qname, we need to check the type map
|
|
* If the parent name has a DNAME or is a delegation point, then
|
|
* this NSEC is being misused. */
|
|
if(dname_subdomain_c(qname, owner) &&
|
|
(nsec_has_type(nsec, LDNS_RR_TYPE_DNAME) ||
|
|
(nsec_has_type(nsec, LDNS_RR_TYPE_NS)
|
|
&& !nsec_has_type(nsec, LDNS_RR_TYPE_SOA))
|
|
)) {
|
|
return 0;
|
|
}
|
|
|
|
if(query_dname_compare(owner, next) == 0) {
|
|
/* this nsec is the only nsec */
|
|
/* zone.name NSEC zone.name, disproves everything else */
|
|
/* but only for subdomains of that zone */
|
|
if(dname_strict_subdomain_c(qname, next))
|
|
return 1;
|
|
}
|
|
else if(dname_canonical_compare(owner, next) > 0) {
|
|
/* this is the last nsec, ....(bigger) NSEC zonename(smaller) */
|
|
/* the names after the last (owner) name do not exist
|
|
* there are no names before the zone name in the zone
|
|
* but the qname must be a subdomain of the zone name(next). */
|
|
if(dname_canonical_compare(owner, qname) < 0 &&
|
|
dname_strict_subdomain_c(qname, next))
|
|
return 1;
|
|
} else {
|
|
/* regular NSEC, (smaller) NSEC (larger) */
|
|
if(dname_canonical_compare(owner, qname) < 0 &&
|
|
dname_canonical_compare(qname, next) < 0) {
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int val_nsec_proves_insecuredelegation(struct ub_packed_rrset_key* nsec,
|
|
struct query_info* qinfo)
|
|
{
|
|
if(nsec_has_type(nsec, LDNS_RR_TYPE_NS) &&
|
|
!nsec_has_type(nsec, LDNS_RR_TYPE_DS) &&
|
|
!nsec_has_type(nsec, LDNS_RR_TYPE_SOA)) {
|
|
/* see if nsec signals an insecure delegation */
|
|
if(qinfo->qtype == LDNS_RR_TYPE_DS) {
|
|
/* if type is DS and qname is equal to nsec, then it
|
|
* is an exact match nsec, result not insecure */
|
|
if(dname_strict_subdomain_c(qinfo->qname,
|
|
nsec->rk.dname))
|
|
return 1;
|
|
} else {
|
|
if(dname_subdomain_c(qinfo->qname, nsec->rk.dname))
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
uint8_t*
|
|
nsec_closest_encloser(uint8_t* qname, struct ub_packed_rrset_key* nsec)
|
|
{
|
|
uint8_t* next;
|
|
size_t nlen;
|
|
uint8_t* common1, *common2;
|
|
if(!nsec_get_next(nsec, &next, &nlen))
|
|
return NULL;
|
|
/* longest common with owner or next name */
|
|
common1 = dname_get_shared_topdomain(nsec->rk.dname, qname);
|
|
common2 = dname_get_shared_topdomain(next, qname);
|
|
if(dname_count_labels(common1) > dname_count_labels(common2))
|
|
return common1;
|
|
return common2;
|
|
}
|
|
|
|
int val_nsec_proves_positive_wildcard(struct ub_packed_rrset_key* nsec,
|
|
struct query_info* qinf, uint8_t* wc)
|
|
{
|
|
uint8_t* ce;
|
|
/* 1) prove that qname doesn't exist and
|
|
* 2) that the correct wildcard was used
|
|
* nsec has been verified already. */
|
|
if(!val_nsec_proves_name_error(nsec, qinf->qname))
|
|
return 0;
|
|
/* check wildcard name */
|
|
ce = nsec_closest_encloser(qinf->qname, nsec);
|
|
if(!ce)
|
|
return 0;
|
|
if(query_dname_compare(wc, ce) != 0) {
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
val_nsec_proves_no_wc(struct ub_packed_rrset_key* nsec, uint8_t* qname,
|
|
size_t qnamelen)
|
|
{
|
|
/* Determine if a NSEC record proves the non-existence of a
|
|
* wildcard that could have produced qname. */
|
|
int labs;
|
|
int i;
|
|
uint8_t* ce = nsec_closest_encloser(qname, nsec);
|
|
uint8_t* strip;
|
|
size_t striplen;
|
|
uint8_t buf[LDNS_MAX_DOMAINLEN+3];
|
|
if(!ce)
|
|
return 0;
|
|
/* we can subtract the closest encloser count - since that is the
|
|
* largest shared topdomain with owner and next NSEC name,
|
|
* because the NSEC is no proof for names shorter than the owner
|
|
* and next names. */
|
|
labs = dname_count_labels(qname) - dname_count_labels(ce);
|
|
|
|
for(i=labs; i>0; i--) {
|
|
/* i is number of labels to strip off qname, prepend * wild */
|
|
strip = qname;
|
|
striplen = qnamelen;
|
|
dname_remove_labels(&strip, &striplen, i);
|
|
if(striplen > LDNS_MAX_DOMAINLEN-2)
|
|
continue; /* too long to prepend wildcard */
|
|
buf[0] = 1;
|
|
buf[1] = (uint8_t)'*';
|
|
memmove(buf+2, strip, striplen);
|
|
if(val_nsec_proves_name_error(nsec, buf)) {
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Find shared topdomain that exists
|
|
*/
|
|
static void
|
|
dlv_topdomain(struct ub_packed_rrset_key* nsec, uint8_t* qname,
|
|
uint8_t** nm, size_t* nm_len)
|
|
{
|
|
/* make sure reply is part of nm */
|
|
/* take shared topdomain with left of NSEC. */
|
|
|
|
/* because, if empty nonterminal, then right is subdomain of qname.
|
|
* and any shared topdomain would be empty nonterminals.
|
|
*
|
|
* If nxdomain, then the right is bigger, and could have an
|
|
* interesting shared topdomain, but if it does have one, it is
|
|
* an empty nonterminal. An empty nonterminal shared with the left
|
|
* one. */
|
|
int n;
|
|
uint8_t* common = dname_get_shared_topdomain(qname, nsec->rk.dname);
|
|
n = dname_count_labels(*nm) - dname_count_labels(common);
|
|
dname_remove_labels(nm, nm_len, n);
|
|
}
|
|
|
|
int val_nsec_check_dlv(struct query_info* qinfo,
|
|
struct reply_info* rep, uint8_t** nm, size_t* nm_len)
|
|
{
|
|
uint8_t* next;
|
|
size_t i, nlen;
|
|
int c;
|
|
/* we should now have a NOERROR/NODATA or NXDOMAIN message */
|
|
if(rep->an_numrrsets != 0) {
|
|
return 0;
|
|
}
|
|
/* is this NOERROR ? */
|
|
if(FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NOERROR) {
|
|
/* it can be a plain NSEC match - go up one more level. */
|
|
/* or its an empty nonterminal - go up to nonempty level */
|
|
for(i=0; i<rep->ns_numrrsets; i++) {
|
|
if(htons(rep->rrsets[i]->rk.type)!=LDNS_RR_TYPE_NSEC ||
|
|
!nsec_get_next(rep->rrsets[i], &next, &nlen))
|
|
continue;
|
|
c = dname_canonical_compare(
|
|
rep->rrsets[i]->rk.dname, qinfo->qname);
|
|
if(c == 0) {
|
|
/* plain match */
|
|
if(nsec_has_type(rep->rrsets[i],
|
|
LDNS_RR_TYPE_DLV))
|
|
return 0;
|
|
dname_remove_label(nm, nm_len);
|
|
return 1;
|
|
} else if(c < 0 &&
|
|
dname_strict_subdomain_c(next, qinfo->qname)) {
|
|
/* ENT */
|
|
dlv_topdomain(rep->rrsets[i], qinfo->qname,
|
|
nm, nm_len);
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* is this NXDOMAIN ? */
|
|
if(FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NXDOMAIN) {
|
|
/* find the qname denial NSEC record. It can tell us
|
|
* a closest encloser name; or that we not need bother */
|
|
for(i=0; i<rep->ns_numrrsets; i++) {
|
|
if(htons(rep->rrsets[i]->rk.type) != LDNS_RR_TYPE_NSEC)
|
|
continue;
|
|
if(val_nsec_proves_name_error(rep->rrsets[i],
|
|
qinfo->qname)) {
|
|
log_nametypeclass(VERB_ALGO, "topdomain on",
|
|
rep->rrsets[i]->rk.dname,
|
|
ntohs(rep->rrsets[i]->rk.type), 0);
|
|
dlv_topdomain(rep->rrsets[i], qinfo->qname,
|
|
nm, nm_len);
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
return 0;
|
|
}
|