mirror of
https://codeberg.org/anoncontributorxmr/monero.git
synced 2024-11-23 10:37:37 -07:00
582 lines
16 KiB
C++
582 lines
16 KiB
C++
// Copyright (c) 2014-2016, The Monero Project
|
|
//
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification, are
|
|
// permitted provided that the following conditions are met:
|
|
//
|
|
// 1. Redistributions of source code must retain the above copyright notice, this list of
|
|
// conditions and the following disclaimer.
|
|
//
|
|
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
|
|
// of conditions and the following disclaimer in the documentation and/or other
|
|
// materials provided with the distribution.
|
|
//
|
|
// 3. Neither the name of the copyright holder nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without specific
|
|
// prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
|
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
|
|
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers
|
|
|
|
#include "gtest/gtest.h"
|
|
|
|
#include <cstdint>
|
|
#include <algorithm>
|
|
|
|
#include "ringct/rctTypes.h"
|
|
#include "ringct/rctSigs.h"
|
|
#include "ringct/rctOps.h"
|
|
|
|
using namespace crypto;
|
|
using namespace rct;
|
|
|
|
TEST(ringct, SNL)
|
|
{
|
|
key x, P1;
|
|
skpkGen(x, P1);
|
|
|
|
key P2 = pkGen();
|
|
key P3 = pkGen();
|
|
|
|
key L1, s1, s2;
|
|
GenSchnorrNonLinkable(L1, s1, s2, x, P1, P2, 0);
|
|
|
|
// a valid one
|
|
// an invalid one
|
|
ASSERT_TRUE(VerSchnorrNonLinkable(P1, P2, L1, s1, s2));
|
|
ASSERT_FALSE(VerSchnorrNonLinkable(P1, P3, L1, s1, s2));
|
|
}
|
|
|
|
TEST(ringct, ASNL)
|
|
{
|
|
int j = 0;
|
|
|
|
//Tests for ASNL
|
|
//#ASNL true one, false one, C != sum Ci, and one out of the range..
|
|
int N = 64;
|
|
key64 xv;
|
|
key64 P1v;
|
|
key64 P2v;
|
|
bits indi;
|
|
|
|
for (j = 0 ; j < N ; j++) {
|
|
indi[j] = (int)randXmrAmount(2);
|
|
|
|
xv[j] = skGen();
|
|
if ( (int)indi[j] == 0 ) {
|
|
P1v[j] = scalarmultBase(xv[j]);
|
|
P2v[j] = pkGen();
|
|
|
|
} else {
|
|
|
|
P2v[j] = scalarmultBase(xv[j]);
|
|
P1v[j] = pkGen();
|
|
|
|
}
|
|
}
|
|
|
|
//#true one
|
|
asnlSig L1s2s = GenASNL(xv, P1v, P2v, indi);
|
|
ASSERT_TRUE(VerASNL(P1v, P2v, L1s2s));
|
|
|
|
//#false one
|
|
indi[3] = (indi[3] + 1) % 2;
|
|
L1s2s = GenASNL(xv, P1v, P2v, indi);
|
|
ASSERT_FALSE(VerASNL(P1v, P2v, L1s2s));
|
|
|
|
//#true one again
|
|
indi[3] = (indi[3] + 1) % 2;
|
|
L1s2s = GenASNL(xv, P1v, P2v, indi);
|
|
ASSERT_TRUE(VerASNL(P1v, P2v, L1s2s));
|
|
|
|
//#false one
|
|
L1s2s = GenASNL(xv, P2v, P1v, indi);
|
|
ASSERT_FALSE(VerASNL(P1v, P2v, L1s2s));
|
|
}
|
|
|
|
TEST(ringct, MG_sigs)
|
|
{
|
|
int j = 0;
|
|
int N = 0;
|
|
|
|
//Tests for MG Sigs
|
|
//#MG sig: true one
|
|
N = 3;// #cols
|
|
int R = 3;// #rows
|
|
keyV xtmp = skvGen(R);
|
|
keyM xm = keyMInit(R, N);// = [[None]*N] #just used to generate test public keys
|
|
keyV sk = skvGen(R);
|
|
keyM P = keyMInit(R, N);// = keyM[[None]*N] #stores the public keys;
|
|
int ind = 2;
|
|
int i = 0;
|
|
for (j = 0 ; j < R ; j++) {
|
|
for (i = 0 ; i < N ; i++)
|
|
{
|
|
xm[i][j] = skGen();
|
|
P[i][j] = scalarmultBase(xm[i][j]);
|
|
}
|
|
}
|
|
for (j = 0 ; j < R ; j++) {
|
|
sk[j] = xm[ind][j];
|
|
}
|
|
key message = identity();
|
|
mgSig IIccss = MLSAG_Gen(message, P, sk, ind);
|
|
ASSERT_TRUE(MLSAG_Ver(message, P, IIccss));
|
|
|
|
//#MG sig: false one
|
|
N = 3;// #cols
|
|
R = 3;// #rows
|
|
xtmp = skvGen(R);
|
|
keyM xx(N, xtmp);// = [[None]*N] #just used to generate test public keys
|
|
sk = skvGen(R);
|
|
//P (N, xtmp);// = keyM[[None]*N] #stores the public keys;
|
|
|
|
ind = 2;
|
|
for (j = 0 ; j < R ; j++) {
|
|
for (i = 0 ; i < N ; i++)
|
|
{
|
|
xx[i][j] = skGen();
|
|
P[i][j] = scalarmultBase(xx[i][j]);
|
|
}
|
|
sk[j] = xx[ind][j];
|
|
}
|
|
sk[2] = skGen();//asume we don't know one of the private keys..
|
|
IIccss = MLSAG_Gen(message, P, sk, ind);
|
|
ASSERT_FALSE(MLSAG_Ver(message, P, IIccss));
|
|
}
|
|
|
|
TEST(ringct, range_proofs)
|
|
{
|
|
//Ring CT Stuff
|
|
//ct range proofs
|
|
ctkeyV sc, pc;
|
|
ctkey sctmp, pctmp;
|
|
//add fake input 5000
|
|
tie(sctmp, pctmp) = ctskpkGen(6000);
|
|
sc.push_back(sctmp);
|
|
pc.push_back(pctmp);
|
|
|
|
|
|
tie(sctmp, pctmp) = ctskpkGen(7000);
|
|
sc.push_back(sctmp);
|
|
pc.push_back(pctmp);
|
|
vector<xmr_amount >amounts;
|
|
|
|
|
|
//add output 500
|
|
amounts.push_back(500);
|
|
keyV destinations;
|
|
key Sk, Pk;
|
|
skpkGen(Sk, Pk);
|
|
destinations.push_back(Pk);
|
|
|
|
|
|
//add output for 12500
|
|
amounts.push_back(12500);
|
|
skpkGen(Sk, Pk);
|
|
destinations.push_back(Pk);
|
|
|
|
//compute rct data with mixin 500
|
|
rctSig s = genRct(sc, pc, destinations, amounts, 3);
|
|
|
|
//verify rct data
|
|
ASSERT_TRUE(verRct(s));
|
|
|
|
//decode received amount
|
|
ASSERT_TRUE(decodeRct(s, Sk, 1));
|
|
|
|
// Ring CT with failing MG sig part should not verify!
|
|
// Since sum of inputs != outputs
|
|
|
|
amounts[1] = 12501;
|
|
skpkGen(Sk, Pk);
|
|
destinations[1] = Pk;
|
|
|
|
|
|
//compute rct data with mixin 500
|
|
s = genRct(sc, pc, destinations, amounts, 3);
|
|
|
|
//verify rct data
|
|
ASSERT_FALSE(verRct(s));
|
|
|
|
//decode received amount
|
|
ASSERT_TRUE(decodeRct(s, Sk, 1));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_with_fee)
|
|
{
|
|
//Ring CT Stuff
|
|
//ct range proofs
|
|
ctkeyV sc, pc;
|
|
ctkey sctmp, pctmp;
|
|
//add fake input 5000
|
|
tie(sctmp, pctmp) = ctskpkGen(6001);
|
|
sc.push_back(sctmp);
|
|
pc.push_back(pctmp);
|
|
|
|
|
|
tie(sctmp, pctmp) = ctskpkGen(7000);
|
|
sc.push_back(sctmp);
|
|
pc.push_back(pctmp);
|
|
vector<xmr_amount >amounts;
|
|
|
|
|
|
//add output 500
|
|
amounts.push_back(500);
|
|
keyV destinations;
|
|
key Sk, Pk;
|
|
skpkGen(Sk, Pk);
|
|
destinations.push_back(Pk);
|
|
|
|
//add txn fee for 1
|
|
//has no corresponding destination..
|
|
amounts.push_back(1);
|
|
|
|
//add output for 12500
|
|
amounts.push_back(12500);
|
|
skpkGen(Sk, Pk);
|
|
destinations.push_back(Pk);
|
|
|
|
//compute rct data with mixin 500
|
|
rctSig s = genRct(sc, pc, destinations, amounts, 3);
|
|
|
|
//verify rct data
|
|
ASSERT_TRUE(verRct(s));
|
|
|
|
//decode received amount
|
|
ASSERT_TRUE(decodeRct(s, Sk, 1));
|
|
|
|
// Ring CT with failing MG sig part should not verify!
|
|
// Since sum of inputs != outputs
|
|
|
|
amounts[1] = 12501;
|
|
skpkGen(Sk, Pk);
|
|
destinations[1] = Pk;
|
|
|
|
|
|
//compute rct data with mixin 500
|
|
s = genRct(sc, pc, destinations, amounts, 3);
|
|
|
|
//verify rct data
|
|
ASSERT_FALSE(verRct(s));
|
|
|
|
//decode received amount
|
|
ASSERT_TRUE(decodeRct(s, Sk, 1));
|
|
}
|
|
|
|
static bool range_proof_test(bool expected_valid,
|
|
int n_inputs, const uint64_t input_amounts[], int n_outputs, const uint64_t output_amounts[])
|
|
{
|
|
ctkeyV sc, pc;
|
|
ctkey sctmp, pctmp;
|
|
vector<xmr_amount >amounts;
|
|
keyV destinations;
|
|
key Sk, Pk;
|
|
|
|
for (int n = 0; n < n_inputs; ++n) {
|
|
tie(sctmp, pctmp) = ctskpkGen(input_amounts[n]);
|
|
sc.push_back(sctmp);
|
|
pc.push_back(pctmp);
|
|
}
|
|
|
|
for (int n = 0; n < n_outputs; ++n) {
|
|
amounts.push_back(output_amounts[n]);
|
|
skpkGen(Sk, Pk);
|
|
destinations.push_back(Pk);
|
|
}
|
|
|
|
//compute rct data
|
|
bool valid;
|
|
try {
|
|
rctSig s = genRct(sc, pc, destinations, amounts, 3);
|
|
valid = verRct(s);
|
|
}
|
|
catch (const std::exception &e) {
|
|
valid = false;
|
|
}
|
|
|
|
if (valid == expected_valid) {
|
|
return testing::AssertionSuccess();
|
|
}
|
|
else {
|
|
return testing::AssertionFailure();
|
|
}
|
|
}
|
|
|
|
#define NELTS(array) (sizeof(array)/sizeof(array[0]))
|
|
|
|
TEST(ringct, range_proofs_reject_empty_outs)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_empty_ins)
|
|
{
|
|
const uint64_t inputs[] = {};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_all_empty)
|
|
{
|
|
const uint64_t inputs[] = {};
|
|
const uint64_t outputs[] = {};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_zero_empty)
|
|
{
|
|
const uint64_t inputs[] = {0};
|
|
const uint64_t outputs[] = {};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_empty_zero)
|
|
{
|
|
const uint64_t inputs[] = {};
|
|
const uint64_t outputs[] = {0};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_zero)
|
|
{
|
|
const uint64_t inputs[] = {0};
|
|
const uint64_t outputs[] = {0};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_out_first)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {0, 5000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_out_last)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {5000, 0};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_out_middle)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {2500, 0, 2500};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_in_first)
|
|
{
|
|
const uint64_t inputs[] = {0, 5000};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_in_last)
|
|
{
|
|
const uint64_t inputs[] = {5000, 0};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_in_middle)
|
|
{
|
|
const uint64_t inputs[] = {2500, 0, 2500};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_single_lower)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {1};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_single_higher)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {5001};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_single_out_negative)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {(uint64_t)-1000ll};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_out_negative_first)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {(uint64_t)-1000ll, 6000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_out_negative_last)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {6000, (uint64_t)-1000ll};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_out_negative_middle)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {3000, (uint64_t)-1000ll, 3000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_single_in_negative)
|
|
{
|
|
const uint64_t inputs[] = {(uint64_t)-1000ll};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_in_negative_first)
|
|
{
|
|
const uint64_t inputs[] = {(uint64_t)-1000ll, 6000};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_in_negative_last)
|
|
{
|
|
const uint64_t inputs[] = {6000, (uint64_t)-1000ll};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_in_negative_middle)
|
|
{
|
|
const uint64_t inputs[] = {3000, (uint64_t)-1000ll, 3000};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_higher_list)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000, 1000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_1_to_1)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_1_to_N)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_N_to_1)
|
|
{
|
|
const uint64_t inputs[] = {1000, 1000, 1000, 1000, 1000};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_N_to_N)
|
|
{
|
|
const uint64_t inputs[] = {1000, 1000, 1000, 1000, 1000};
|
|
const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_very_long)
|
|
{
|
|
const size_t N=64;
|
|
uint64_t inputs[N];
|
|
uint64_t outputs[N];
|
|
for (size_t n = 0; n < N; ++n) {
|
|
inputs[n] = n;
|
|
outputs[n] = n;
|
|
}
|
|
std::random_shuffle(inputs, inputs + N);
|
|
std::random_shuffle(outputs, outputs + N);
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs));
|
|
}
|
|
|
|
TEST(ringct, HPow2)
|
|
{
|
|
key G = scalarmultBase(d2h(1));
|
|
|
|
key H = hashToPointSimple(G);
|
|
for (int j = 0 ; j < ATOMS ; j++) {
|
|
ASSERT_TRUE(equalKeys(H, H2[j]));
|
|
addKeys(H, H, H);
|
|
}
|
|
}
|
|
|
|
static const xmr_amount test_amounts[]={0, 1, 2, 3, 4, 5, 10000, 10000000000000000000ull, 10203040506070809000ull, 123456789123456789};
|
|
|
|
TEST(ringct, ecdh_roundtrip)
|
|
{
|
|
key k, P1;
|
|
ecdhTuple t0, t1;
|
|
|
|
for (auto amount: test_amounts) {
|
|
skpkGen(k, P1);
|
|
|
|
t0.mask = skGen();
|
|
t0.amount = d2h(amount);
|
|
|
|
t1 = t0;
|
|
ecdhEncode(t1, P1);
|
|
ecdhDecode(t1, k);
|
|
ASSERT_TRUE(t0.mask == t1.mask);
|
|
ASSERT_TRUE(equalKeys(t0.mask, t1.mask));
|
|
ASSERT_TRUE(t0.amount == t1.amount);
|
|
ASSERT_TRUE(equalKeys(t0.amount, t1.amount));
|
|
}
|
|
}
|
|
|
|
TEST(ringct, d2h)
|
|
{
|
|
key k, P1;
|
|
skpkGen(k, P1);
|
|
for (auto amount: test_amounts) {
|
|
d2h(k, amount);
|
|
ASSERT_TRUE(amount == h2d(k));
|
|
}
|
|
}
|
|
|
|
TEST(ringct, d2b)
|
|
{
|
|
for (auto amount: test_amounts) {
|
|
bits b;
|
|
d2b(b, amount);
|
|
ASSERT_TRUE(amount == b2d(b));
|
|
}
|
|
}
|
|
|
|
TEST(ringct, prooveRange_is_non_deterministic)
|
|
{
|
|
key C[2], mask[2];
|
|
for (int n = 0; n < 2; ++n)
|
|
proveRange(C[n], mask[n], 80);
|
|
ASSERT_TRUE(memcmp(C[0].bytes, C[1].bytes, sizeof(C[0].bytes)));
|
|
ASSERT_TRUE(memcmp(mask[0].bytes, mask[1].bytes, sizeof(mask[0].bytes)));
|
|
}
|